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1 Setting the Scene

In this project we aim to build an understanding of the theory behind completion of
rings. We shall discuss local rings that are complete and conclude by stating (and proving
a special case thereof) the Cohen structure theorem which concerns the classification of
complete local Noetherian rings. A good understanding of elementary ring and module
theory is assumed. Henceforth, all rings are assumed commutative with unity.

We begin by stating some important preliminary definitions:

Definition 1.1. Let R be a ring. We say that R is a local ring if it contains a unique
maximal ideal m / R.

Definition 1.2. Let R be a ring. We define the ring of formal power series in X over
R to be

R[[X]] =

{
∞∑
i=0

riX
i

∣∣∣∣∣ ri ∈ R
}

Given any a =
∑∞

i=0 aiX
i and b =

∑∞
i=0 biX

i, we define their sum as

∞∑
i=0

aiX
i +

∞∑
i=0

aiX
i =

∞∑
i=0

(ai + bi)X
i

and their product as(
∞∑
i=0

aiX
i

)(
∞∑
i=0

aiX
i

)
=
∞∑
i=0

ciX
i, ck =

∑
i+j=k

aibj

It is readily verified that the ring of formal power series over R is indeed a ring (com-
pletely analogously to the argumentation for a polynomial ring). We can also generalise this
definition to that of formal power series in n indeterminates X1, . . . , Xn.

We shall soon see that the ring of formal power series over R can be constructed as the
completion of the ring of polynomials over R with respect to some ideal.
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Definition 1.3. Let {Gi }i∈ I be a family of algebraic structures (such as groups, rings or
modules etc) indexed by some directed partially ordered1 set I. Furthermore, let

σji : Gj → Gi, i ≤ j

be a collection of morphisms between the Gi. We say that (Gi, σji) is an inverse system
when the following conditions hold:

1. σii is the identity morphism

2. Given any i, j, k ∈ I such that i ≤ j ≤ k we have σki = σji ◦ σkj

Definition 1.4. Let (Gi, σji) be an inverse system. We define the inverse limit (or pro-
jective limit) of the system as

lim←−
i∈ I

Gi =

{
g ∈

∏
i∈ I

Gi

∣∣∣∣∣ gi = σji(gj) ∀i ∈ I

}

In some sense, the inverse limit of an inverse system is defined to be the set of all sequences
in the direct product which are ‘coherent’ with respect to the transition morphisms σji.

The inverse limit can be defined in a much more abstract and general manner in the
context of category theory. The above definition, however, will be sufficient for the purposes
of our discussion.

2 Completion

Definition 2.1. Let R be a ring. A sequence of ideals

R = m0 ⊇ m1 ⊇ . . .

is called a descending filtration of ideals of R. We shall denote such a sequence by
{mi }.

Definition 2.2. Let R be a ring and {mi } a descending filtration. We define the comple-
tion of R with respect to the filtration {mi } to be

R̂ = lim←−R/mi

where the transition morphisms between the R/mi are reduction modulo mi.

Example 2.3. Let R be a ring filtered by the ideals mi for some m /R. We call {mi = mi }
the m-adic filtration of R. The completion of R with respect to m, denoted R̂m, is the
completion of R with respect to the m-adic filtration. Furthermore, if there exists an iso-
morphism R

∼−→ R̂m, we say that R is complete with respect to m.

1If (I,≤) is a partial ordering then I is directed if, given any a, b ∈ I, there exists a c ∈ I such that
a ≤ c and b ≤ c.
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Lemma 2.4. Let R be a ring and m /R a maximal ideal. Then R/mk is a local ring for all
k ≥ 1.

Proof. Let M / R/mk be a prime ideal. Then M is of the form P/mk where mk ⊆ P ⊆ R
and P is some prime ideal of R. It is easy to see by the definition of a prime ideal that if
mk ⊆ P then m ⊆ P . But m is maximal in R and thus P = m. It follows that m/mk is
the unique prime ideal of R/mk. Now, Krull’s Theorem implies that R/mk has at least one
maximal ideal. Since any maximal ideal is necessarily a prime ideal, m/mk is the unique
maximal ideal and R/mk is a local ring.

Proposition 2.5. Let R be a ring and m / R a maximal ideal. Then R̂m is a local ring.

Proof. We first observe that since m is a maximal ideal, R/m is a field. We claim that

M = { (g1, g2, g3, . . . ) ∈ R̂m | g1 = 0 }

is the unique maximal ideal of R̂m. Indeed, consider the mapping

φ : R̂m → R/m

g 7→ π1(g)

where πi is the projection onto the ith coordinate. This map is clearly surjective whose
kernel is exactly M . Hence R̂m/M ∼= R/m whence M is maximal.

It remains to show that M is the unique such maximal ideal. To this end, we shall show
that any element outside of M is a unit. Fix some g = (g1, g2, . . . ) ∈ R̂m\M . Clearly, g1 6≡ 0
(mod m) whence gi 6≡ 0 (mod mi) for all i ≥ 1. By the previous lemma, R/mi is a local
ring with maximal ideal m/mi. By an isomorphism theorem we have

R/mi

m/mi
∼= R/m

where m/mi is the kernel of the transition homomorphism R/mi → R/m. It follows that
gi /∈ m/mi and thus gi is a unit. Hence each gi possesses an inverse g−1i ∈ R/mi. We claim
that (g−11 , g−12 , . . . ) is an element of the inverse limit. Multiplying the condition gj ≡ gi
(mod mi) through by the corresponding inverses, we get g−1j ≡ g−1i (mod mi) and hence the
inverse sequence is indeed in the inverse limit. We see that any element outside of M is a
unit and thus M is the unique maximal ideal, making R̂m a local ring.

The above proposition gives us a simple way to construct complete local rings out of a
ring and one of its maximal ideals - a powerful tool as we shall see later on.

We now make good on our promise in the previous section and show that the ring of
formal power series can be obtained in the form of a completion.

Proposition 2.6. Let R be a ring and S = R[X1, . . . , Xn]. Then Ŝ(X1,...,Xn)
∼= R[[X1, . . . , Xn]].

Proof. We shall only consider the case of one indeterminate X. The generalisation to n
indeterminates follows easily. We have the natural homomorphisms

R[[X]]→ R/(X)i

f → f + (X i)

which induces a homomorphism ψ : R[[X]] → R̂(X). To show that this is an isomorphism,
we shall construct its inverse.
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Fix some f =
∑∞

i=0 aiX
i ∈ R[[X]]. We need to find a function ψ−1 such that

ψ−1(f + (X), f + (X2), . . . ) = f(X)

Define fi(X) to be the ‘cutoff’ polynomial of f up to (but not including) the ith power.
Then

(f1(X), f2(X), . . . ) = (a0, a0 + a1X, . . . ) = (f + (X), f + (X2), . . . ) = ψ(f)

We can now define the inverse ψ−1 in terms of these cutoff polynomials:

ψ−1 : R̂(X) → R[[X]]

(f1(X), f2(X), . . . ) 7→ f1(X) + (f2(X)− f1(X)) + . . .

Indeed, we have

ψ−1(f + (X), f + (X2), . . . ) = ψ−1(f1(X), f2(X), . . . )

= f1(X) + (f2(X)− f1(X)) + (f3(X)− f2(X)) + . . .

= a0 + (a0 + a1(X)− a0) + (a0 + a1X + a2X
2 − a0 − a1(X)) + . . .

= a0 + a1(X) + a2X
2 + · · · = f(X)

Example 2.7. Another example is the p-adic completion of the integers:

Zp = lim←−
n∈N

Z/(pn)

which consists of infinite sequences that can be represented as formal power series in p:

a0 + a1p+ a2p
2 + · · · ∈ Zp

where ai ∈ Fp. Since (p) is maximal in Z, we see that Zp is a complete local ring.

There exists a rich theory of p-adic numbers and p-adic analysis which reveals their
usefulness, the majority of which is outside the scope of this project. For completeness sake,
we note that Frac(Zp) = Qp is the (topological) completion of Q with respect to the so-called
p-adic norm. In fact, Ostrowski’s theorem shows that the p-adic completions are the only
such completions of Q, along with the standard real numbers R. The interested reader is
invited to read Koblitz [3] which provides a rigorous account of the aforementioned details.

3 Krull’s Intersection Theorem

A natural question to ask is whether passing to the completion preserves the information
of the original ring. Let R be a ring, m / R an ideal and consider the ring homomorphism

φ : R→ R̂m

r 7→ (r + m, r + m2, . . . )

The kernel of this mapping is clearly
⋂∞
i=1m

i. For φ to be injective (and thus, information-
preserving), we would require that

⋂∞
i=1m

i = { 0 }. In this section we shall see that this is
the case when R is Noetherian and either an integral domain or a local ring (although these
may not be necessary conditions).

We begin by generalising our notion of filtrations.
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Definition 3.1. Let R be a ring. A sequence of additive subgroups

R = R0 ⊇ R1 ⊇ . . .

such that RmRn ⊆ Rm+n is called a descending filtration. Furthermore if M is a module
over R and

M = M0 ⊇M1 ⊇ . . .

is a sequence of submodules of M such that RmMn ⊆ Mm+n then such a sequence is a
descending filtration of M .

Example 3.2. As before, we have the m-adic filtration where Rn = mn for some ideal m of
R. Similarly, we can filter any module M with the filtration Mn = mnM .

Definition 3.3. Let M be a module over a ring R that is filtered by {Mn }. Suppose that
m / R is an ideal. We say that {Mn } is an m-filtration if mMn ⊆ Mn+1 for all n ∈ N. If,
furthermore, we have mMn = Mn+1 for sufficiently large n then {Mn } is m-stable.

Example 3.4. The m-adic filtration is clearly m-stable.

Definition 3.5. Let R be a ring. We say that R is a graded ring if there exists a family of
additive subgroups {Rn } such that RmRn ⊆ Rm+n and R = ⊕n∈NRn. If M is an R-module,
we say that M is a graded module if there exists a family of submodules {Mn } such that
M = ⊕n∈NMn and AnMm ⊆Mn+m

Example 3.6. Let R be a ring. Then the polynomial ring R[X1, . . . , Xn] is graded with Rn

the set of all homogeneous polynomials of degree n.

Lemma 3.7. Let R be a Noetherian ring and m / R an ideal. Define a graded ring

R∗ =
⊕
n∈N

mn

Then R∗ is Noetherian.

Proof. Since R is Noetherian we must have that m = (m1, . . . ,mn) for some m1, . . . ,mn.
It is easy to see that R[X1, . . . , Xn] surjects onto R∗. Indeed, the map sending Xi to mi is
surjective since m1, . . . ,mn are generators for m. Appealing to Hilbert’s Basis Theorem, we
see that R∗ is Noetherian.

Lemma 3.8. Let R be a Noetherian ring and m / R an ideal. Suppose that M is a finitely-
generated R-module and {Mn } an m-filtration of M . Define M∗ = ⊕n∈NMn to be a graded
R∗-module. Then the following are equivalent:

1. M∗ is a finitely generated R∗-module

2. {Mn } is m-stable

Proof. Define Nn = ⊕n∈NMi. Clearly, Nn is finitely generated for all n. Now consider

M∗
n = Nn ⊕mMn ⊕m2Mn ⊕ . . .

This is clearly an R∗-submodule of M . Indeed, M∗
n is a subgroup of Mn by the fact that

{Mn } is an m-filtration. M∗
n also satisifes the conditions of a gradedR∗ module by definition.
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Since Nn is finitely generated, M∗
n is also finitely generated. We now observe that M∗ is

simply the union over all such M∗
n. This is clear since the direct sum must be non-zero

for only finitely many coordinates. Since R∗ is Noetherian, we have that M∗ is finitely
generated if and only if the ascending chain of M∗

n terminates. This is equivalent to saying
M∗ = M∗

n0
for some n0 ∈ N. But then Mn0+r = mrMn0 for all r ≥ 0. This is equivalent to

{Mn } being m-stable.

Proposition 3.9 (Artin-Rees Lemma). Let R be a Noetherian ring and m / R an ideal.
Suppose that M is a finitely generated module over R and that {Mn } is a m-stable filtration
of M . Then given any R-submodule of M , say N , we have that {N ∩Mn } is an m-stable
filtration of N .

Proof. It is clear that

m(N ∩Mn) ⊆ mN ∩mMn ⊆ N ∩Mn+1

whence N ∩Mn is an m-filtration. It thus defines a graded R∗-submodule of M and we may
apply Lemma 3.8 to see that N ∩Mn is m-stable.

Theorem 3.10 (Krull’s Intersection Theorem). Let R be a Noetherian ring and m / R an
ideal. Suppose that M is a finitely generated R-module. Then there exists an element r ∈ m
such that

(1− r)

(
∞⋂
i=1

miM

)
= 0

Furthermore, if R is an integral domain or a local ring and m a proper ideal, then

∞⋂
i=1

mi = 0

Proof. We first observe that {mnM } is an m-stable filtration of M . It is clear that N =⋂∞
i=1 m

iM is an R-submodule of M . It then follows from the Artin-Rees Lemma that
{N ∩miM } is an m-stable filtration of N . In particular, there exists a k such that for all
n ≥ k

N ∩mk+1M = m(N ∩mkM)

But N is contained in both mk+1M and mkM whence N = mN . Appealing to Nakayama’s
Lemma, we see that there must exist some r ∈ m such that (1− r)N = 0.

To prove the second statement, we may consider R as a module over itself. We have

(1− r)
∞⋂
i=1

mi = 0.

Since m is a proper ideal, we know that r 6= 1 whence 1 − r 6= 0. Now, in the case that R
is an integral domain, we must therefore have that

⋂∞
i=1m

i = 0. If R is a local ring then m
and, in particular, r are necessarily contained in the unique maximal ideal, say M. It is easy
to see that 1− r is then a unit. Indeed, if 1− r was not a unit then necessarily, 1− r ∈M .
But then 1 ∈ M which is a contradiction. Since a unit can never be a zero divisor, we see
that

⋂∞
i=1m

i = 0.
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We can now return to the discussion at the beginning of this section. Krull’s Intersec-
tion Theorem now implies that the kernel of the mapping from R to R̂m is zero if R is
Noetherian and either an integral domain or a local ring. For brevity’s sake, we shall call
such a ring embeddable (by no means a canonical name). As its name would suggest, an
embeddable ring can be embedded in its completion. Therefore, the information contained
in an embeddable ring is preserved when passing to its completion.

4 The Noetherian Property

It is all well and good that we can embed certain rings in their completions; however one
may question the usefulness of completions if they did not preserve ‘nice’ properties of rings.
In this section, we aim to show that the Noetherian property of a ring is also preserved when
passing to the completion.

We begin by generalising the Hilbert basis theorem to formal power series.

Theorem 4.1 (Formal Hilbert Basis Theorem). Let R be a Noetherian ring. Then R[[X1, . . . , Xn]]
is Noetherian.

Proof. We prove the theorem for the case of one indeterminate X. The general case then
follows easily by induction. If f = anX

n + an+1X
n+1 + · · · ∈ R[[X]] is a power series, we

shall say that the degree of f is n and that its anti-leading coefficient is an. If f = 0 then
we shall consider the degree of f to be infinite and its anti-leading coefficient to be 0.

Let I / R[[X]] be an ideal. We need to show that I is finitely generated. Fix an f1 ∈ I
of minimal degree (we can clearly do this since the degree must be positive). We first define
a sequence of power series { fn | n ∈ N } ⊆ I inductively. Suppose that we have already
chosen elements f1, . . . , fi−1. Denote their degrees by di and their anti-leading coefficients
by ai. Now if (f1, . . . , fi−1) 6= I then choose an fi ∈ I\(f1, . . . , fi−1) of minimal degree.
If this process terminates then clearly, I is finitely generated. If not, then consider the
ideal (a1, . . . , ai) / R generated by the anti-leading coefficients of the first i functions in the
sequence. We have that

(a1) ⊆ (a1, a2) ⊆ · · · ⊆ (a1, . . . , ai) ⊆ . . .

is an ascending chain of ideals in R. But R is Noetherian so this chain must stabilise at say
i = n. We claim that I is generated by f1, . . . , fn.

Fix some g ∈ I. Let ag be its anti-leading coefficient and dg its degree. It is clear that

ag ∈ (a1, . . . , an). Hence we may write ag =
∑n

i=1 r
(0)
i ai for some r

(0)
i ∈ R. First suppose

that dg ≥ dn. Define the power series

g0 =
n∑
i=1

r
(0)
i Xdg−difi

We observe that g0 also has degree dg and anti-leading coefficient ag. It thus follows that
the degree of g − g0 is greater than dg. Now, g and g0 are both in I so we must have that
g − g0 ∈ I. We see that the anti-leading coefficient of g − g0 is in the ideal generated by
a1, . . . , an. We can then repeat this process to produce a power series g1 with anti-leading
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coefficient and degree equal to those of g − g0. Continuing in this fashion, we inductively
define a sequence of power series g0, . . . , gm such that

gm =
n∑
i=1

r
(m)
i Xdg+m−difi

for some r
(m)
i ∈ R. Now, g−

∑m
i=1 gi has degree greater than dg +m and we clearly see that

g =
∞∑
i=0

gi =
∞∑
i=0

n∑
j=1

r
(i)
j X

dg+i−djfj

Since the inner sum is finite, we may swap the summations to see that g is finitely generated
by the f1, . . . , fn.

Now suppose that dg < dn. We know that ag ∈ (a1, . . . , an) and there must exist some

1 ≤ k ≤ n such that ag ∈ (a1, . . . , ak). Hence dg ≥ dk. We may write ag =
∑k

i=1 r
(0)
i ai for

some r
(0)
i ∈ R. Now define

h =
k∑
i=1

r
(0)
i Xdg−difi

which has the same anti-leading coefficient and degree as g. We see that g − h has degree
greater than dg. Again, we inductively define a sequence in this fashion until we reach a
power series of degree dn. We can then apply the result from the previous case to see that
g ∈ (f1, . . . , fn).

Proposition 4.2. Let R be a Noetherian ring and m /R an ideal. Then the completion R̂m

is Noetherian.

Proof. Fix generators of m, say m1, . . . ,mn ∈ R. We claim that there exists a well-defined
and surjective homomorphism

φ : R[[X1, . . . , Xn]]→ R̂m

that sends each Xi to mi. We can clearly map R[X1, . . . , Xn]/(X1, . . . , Xn)i to R/mi by
sending Xi to mi. This map induces a homomorphism of inverse limits:

φ : lim←−
n∈N

R[X1, . . . , Xn]/(X1, . . . , Xn)n → lim←−
n∈N

R/mn

which gives us our well-defined homomorphism φ : R[[X1, . . . , Xn]] → R̂m. It remains to
show that φ is surjective. To this end, fix an r ∈ R̂m. Then r is a sequence of coherent
elements rk ∈ R/mk. Consider r1, we may lift this element of R/m to an element of R in
the form

r1 = a+ b1

where a ∈ R and b1 is a degree one polynomial in the m1, . . . ,mn. In fact, we may even
consider a as a degree zero polynomial b0 in the m1, . . . ,mn. Hence we may write r1 =
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∑1
i=0 bi. Since the rk are coherent with resepect to the transition morphisms, we may build

lifts of each rk in the form

rk =
k∑
i=0

bk

where bk is a degree k polynomial in the m1, . . . ,mn. Writing bk = fk(m1, . . . ,mn), we easily
see that

r = φ

(
∞∑
i=1

fi(X1, . . . , Xn)

)

Indeed, we may consider the above modulo mk to retrieve each rk. We have shown that φ
is surjective which means that

R[[X1, . . . , Xn]]/ kerφ ∼= R̂m

Now, R[[X1, . . . , Xn]] is Noetherian by the Formal Hilbert Basis Theorem and any quotient
of a Noetherian ring is necessarily Noetherian. We thus see that R̂m is Noetherian.

Clearly, the completion of Noetherian rings is quite well behaved. Combining the results
of the past two sections, we see that a Noetherian ring that is local or an integral domain
can be embedded in its Noetherian completion.

5 Hensel’s Lemma

We now turn our sights towards a useful result for complete local Noetherian rings.
Hensel’s Lemma is an example of solving global problems by reducing them to local ones.
In fact, discussing the behaviour locally may give us more information about the problem
than we could ever have by only looking at the problem globally. As an example, consider
a complete local Noetherian ring R with maximal ideal m. Suppose we have a polynomial
f(x) ∈ R[X] whose image in R/m[X] has a root in R/m. Then such a root can be lifted
to a root in R. By f(X) we shall mean the image of f(X) under the canonical map
R[X]→ (R/m)[X]

Theorem 5.1 (Hensel’s Lemma). Let R be a local Noetherian ring that is complete with
respect to its unique maximal ideal m. Denote its residue field k = R/m. Furthermore, let
f(X) ∈ R[X] be a monic polynomial such that deg f ≥ 1. Suppose G,H are coprime monic
polynomials in k[x] such that f = GH. Then there exists monic polynomials g, h ∈ R[X]
such that g = G, h = H and f = gh.

Proof. Let dG = degG so that degH = dH = n − dG. We shall first construct a sequence
of monic polynomials gi, hi ∈ R[X] satisfying the congruence f ≡ gihi (mod mi[x]) for all
i ≥ 1. Furthermore, we shall require that these gi and hi satisfy gi = G and hi = H.

We proceed by induction. Suppose that G,H are as hypothesised. We may lift the
coefficients of G and H to elements in R, being careful to choose 1 as a lift for the coset 1+m
in order to preserve monicity. This gives us polynomials g1, h1 ∈ R[X] such that g1 = G and
h1 = H and f ≡ g1h1 (mod mi[X]). Clearly, deg g1 = dG and deg h1 = dH . Now suppose
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we have constructed functions satisfying such criteria up to i. We shall construct gi+1, hi+1.
Since G,H are coprime to each other we can find polynomials a, b ∈ k[x] such that

agi + bhi ≡ 1 (mod m[X]) (1)

By the inductive hypothesis, we have that f ≡ gihi (mod mi[X]) which means that f−gihi ∈
mi[X]. Denote this polynomial by z. We may multiply Equation 1 by z to get

z ≡ zagi + zbhi (mod mi+1[X])

Applying the division algorithm to za and the monic polynomial hi we get two polynomials
c, d ∈ R[X] such that za = chi + d with deg d < deg hi = n − deg gi. It is easy to see that
za ∈ mi[X] hence

chi + d ≡ 0 (mod mi[X])

It follows that c, d ∈ mi[X]. Indeed, we may apply the division algorithm to 0 to see that
0 ≡ 0hi+0 (mod mi[X]). But the division algorithm in R/mi[X] produces a unique quotient
and remainder so we must have that c, d ≡ 0 (mod mi[X]) whence c, d ∈ mi[X]. Hence

z ≡ (chi + d)gi + zbhi (mod mi+1[X])

≡ chigi + dgi + zbhi

Now set e = cgi + zb so we have

z ≡ dgi + ehi (mod mi+1[X]) (2)

Since deg z, deg dgi < n we must have deg ehi < n. But deg hi = dH = n− dG which implies
that deg e < dG. It then follows that deg(gi + e) = dG and deg(hi + d) = dH and the two
polymonials are still monic. Hence gi + e and hi + d are good candidates for gi+1 and hi+1

respectively. We just need to check that f ≡ gi+1hi+1 (mod mi+1[X]) and that gi+1 = G
and hi+1 = H. Indeed,

gi+1hi+1 = (gi + e)(hi + d)

= gihi + ehi + dgi + ed

≡ gihi + z (mod mi+1[X])

= f

where we have used the fact that ed ∈ m2i[X] which implies that ed ≡ 0 (mod mi+1[X]).
Now, d, e ∈ mi so, clearly, gi=1 = G and hi+1 = H.

We would now like to show that such a sequence of polynomials gi and hi are unique
up to congruence modulo mi[X]. More concretely, if g′ = G and h′ = H for some poly-
nomials g′, h′ ∈ R[X] and f ≡ g′h′ (mod mi[X]) then g′ ≡ gi (mod mi[X]) and h′ ≡ hi
(mod mi[X]). Suppose this is true for i. We shall prove that this is true for i + 1. Let
g′, h′ ∈ R[X] be monic polynomials of degree dG and dH = n − dG respectively such that
f ≡ g′h′ (mod mi[X]) and g′ = G, h′ = H. By the induction hypothesis, we know that
g′ ≡ gi (mod mi[X]) and h′ ≡ hi (mod mi[X]). Denote e′ = g′ − gi and d′ = h′ − hi.
Reducing modulo mi[X] we see that d′, e′ ∈ mi[X]. Now,

0 ≡ f − g′h′ (mod mi+1[X])

≡ f − (e′ + gi)(d
′ + hi)

≡ f − d′e′ − d′gi − e′hi − gihi
≡ z − d′gi − e′hi
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So that we have z ≡ d′gi + e′hi (mod mi+1[X]). Subtracting this from Equation 2 yields

0 ≡ (d− d′)gi + (e− e′)hi (mod mi+1[X]) (3)

Denote δ = d−d′ and ε = e−e′. These are polynomials of degrees dG and n−dG respectively.
Multiplying Equation 3 by the polynomial a we have

0 ≡ aδgi + aεhi (mod mi+1[X])

Equation 1 implies that agi + bhi − 1 = m. Inserting this into the previous equation and
rearranging, we have

δ ≡ (δb− εa)hi − δm (mod mi+1[X])

Now, δ ∈ mi[X] and m ∈ m[X] whence δ ≡ (δb−εa)hi (mod mi+1[X]). δ is thus a polynomial
multiple of hi in R/mi[X]. But deg δ < n−dG and deg hi = n−dG. Our only option is that
δ ≡ 0 (mod mi+1[X]). A similar argument shows that ε ≡ 0 (mod mi+1[X]). We now see
that

g′ ≡ gi + e′ ≡ gi + e ≡ gi+1 (mod mi+1[X])

h′ ≡ hi + d′ ≡ hi + d ≡ hi+1 (mod mi+1[X])

as required.

We now complete the proof by showing that there exist two polynomials g, h ∈ R[X] such
that f = gh and g = G and h = H. Indeed, let 1 ≤ i < j, then f ≡ gjhj (mod mj) whence
f − gjhj ∈ mj[X] ⊆ mi[X] and thus f ≡ gjhj (mod mi). It follows from the uniqueness
shown above that gj ≡ gi (mod mi[X]) and hj ≡ hi (mod mj[X]). Let ak,j and bl,j be the
kth and lth coefficients of gj and hj respectively, where 0 ≤ k ≤ dG and 0 ≤ l ≤ dH . Clearly,
we must have that

ak,j ≡ ak,i (mod mi)

for all k. Hence, for fixed k, the sequence of coefficients ak,j (indexed over j) are coherent.
Since R is complete, this sequence of coefficients defines an element of the inverse limit, say
ãk. Similarly, we have b̃j is an element of the inverse limit. These elements of R then give
us polynomials in R[X]:

g = ã0 + ã1X + · · ·+ ãdGX
dG

h = b̃0 + b̃1X + · · ·+ b̃dHX
dH

It follows from the fact that gi = G for all i that g = G. Similarly, h = H. Now, we have
that f − gihi ≡ 0 (mod mi[X]) for all i ≥ 1 and thus

f − gh ∈
∞⋂
i=1

mi[X]

But R is a local Noetherian ring and m / R is proper. By Krull’s Intersection Theorem, we
must have that

⋂∞
i=1m

i = { 0 }. We thus see that f = gh as required.

It turns out that Hensel’s Lemma holds for a much wider class of rings than just complete
local Noetherian rings. Any local ring that satisfies the conclusion of Hensel’s Lemma is
referred to as Henselian. Indeed, any complete local Noetherian ring is Henselian.
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Corollary 5.2. Let R be a local Noetherian ring that is complete with respect to its maximal
ideal m. Suppose that f(x) ∈ R[X] is a polynomial. If its image in the residue field f [X] ∈
k[x] has a simple root α then f(X) has a simple root a such that a = α.

Proof. Since α is a simple root of f [X] we may write f [X] = (X − α)H(X) for some H(X)
coprime to X − α. By Hensel’s Lemma, f(X) splits into two polynomials f = gh such that
g = X − α and h = H. This implies that g = X − a for some a ∈ R such that a = α. If h
were not coprime to g then we could write f(X) = (x− a)2h2(X) for some h2(X) ∈ R[X].
But then we would have f(X) = (x−α)2h2(X) which contradicts the fact that α is a simple
root of f(X).

Example 5.3. Consider the polynomial ring R[z]. We may complete this with respect
to its maximal ideal (z) (this is indeed maximal since R is a field) to get R[[z]] also with
maximal ideal (z). We note that the residue field R[[z]]/(z) ∼= R. Consider the polynomial
f(X) = X2 − (1 + z) ∈ (R[[z]])[X]. Now f(X) = (X − 1)(X + 1) ∈ R[X]. Appealing to
Hensel’s Lemma, we see that there exist two power series α(z), β(z) ∈ R[[z]] such that

X2 − (1 + z) = (X − α(z))(X − β(z))

Clearly, α(z) and β(z) are square roots of 1+z so we must have that α(z) = −β(z). Hensel’s
Lemma also implies that the constant terms of these power series are 1 and −1 respectively.

The above example is quite a striking result. It implies there exist purely algebraic
methods of obtaining power series expansions for certain functions. The resulting power
series from the previous example coincides with the one obtained by the Taylor expansion
of
√

1 + z. Indeed, way may proceed algorithmically with the proof of Hensel’s lemma to
construct the coefficients of each term in the power series α(z).

6 Cohen’s Structure Theorem

In this section we aim to prove a special case of the Cohen Structure Theorem - a
fundamental result that characterises complete local Noetherian rings. In order to do so, we
begin by introducing some new ideas.

Definition 6.1. Let R be a ring and m / R an ideal. We define the associated graded
ring of the filtration {mi } as

grm(R) =
∞⊕
i=0

mi/mi+1

with multiplication defined by the map

mn/mn+1 ×mm/mm+1 → mn+m/mn+m+1

(x+ mn+1, y + mm+1) 7→ xy + mn+m+1

Definition 6.2. Consider the following diagram

G0 G1 G2 . . . Gn
φ1 φ2 φ3 φn

where the Gi are groups (or modules) and the φj are morphisms between them. Then we
say that such a diagram is an exact sequence if kerφi+1 = imφi for all i = 1, . . . , n − 1.
If G1, G2 and G3 are groups (modules) and f : G1 → G2 is injective and g : G2 → G3 is
surjective then the following diagram

12



0 G1 G2 G3 0
f g

is called a short exact sequence.

Proposition 6.3 (short five lemma). Consider the commutative diagram with short exact
rows

0 A B C 0

0 D E F 0

f

φ

g

ψ θ

h i

If φ and θ are isomorphisms then so is ψ.

Proof. Proof omitted. The reader is invited to check any standard text on homological
algebra for a rigorous treatment of this proof and of exact sequences in general.

Lemma 6.4. Let R and S be complete local rings that are complete with respect to their
respective maximal ideals m and n. Suppose that φ : R → S is a homomorphism such that
φ(mi) ⊆ ni for all i ≥ 1. If the induced homomorphism of graded rings gr(φ) : grm(R) →
grn(S) is surjective then so is φ.

Proof. Consider the following commutative diagram

0 0

kerφi+1 kerφi

0 mi/mi+1 R/mi+1 R/mi 0

0 ni/ni+1 S/ni+1 S/ni 0

0 0

gri(φ) φi+1 φi

where gri(φ) is the induced map between the ith decompositions in the associated graded
ring and φi is map between the ith coordinates of the inverse limits. Consider the third row
of the above diagram. By an isomorphism theorem, we have that

R/mi+1

mi/mi+1
∼= R/mi

and hence the third row is a short exact sequence. The same argumentation shows that the
fourth row is also a short exact sequence. Now let s ∈ S. We need to exhibit an r ∈ R
such that φ(r) = s. By definition, s is a sequence of coherent elements si ∈ S/ni. Hence it
suffices to show that there exists an ri ∈ R/mi such that φi(ri) = si and ri+1 ≡ ri (mod mi).

We proceed by induction. Clearly, the surjectivity of gr0(φ) implies that φ1 is surjective.
Now assume that φn is surjective. Since grn(φ) is surjective, the short five lemma implies
that φn+1 is surjective. Hence given sn+1 ∈ S/nn+1 there exists rn+1 ∈ R/mn+1 such that
φn+1(rn+1) = sn+1. rn+1 may not reduce to rn modulo mn but the difference between
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them is an element of kerφn. From the diagram, we see that the third and fourth columns
are short exact sequences. The short five lemma then implies that kerφi+1 surjects onto
kerφi. We may thus modify ri+1 by an element of kerφi+1 to obtain the condition ri+1 ≡ ri
(mod mi).

Definition 6.5. Let R be a local ring with unique maximal ideal m. Let ϕ : R → R/m
be the canonical map from R to its residue field. If there exists a field K ⊆ R such that
ϕ maps K isomorphically to R/m then K is said to be a coefficient field of R. In other
words, if R has a coefficient field then R contains a copy of its residue field.

We now proceed to show that any complete local Noetherian ring that contains a field
and whose residue field is perfect necessarily has a coefficient field. We accomplish this first
by proving the case where the residue field has characteristic 0 and then the case where the
characteristic is p > 0.

Lemma 6.6. Let R be a local Noetherian ring that is complete with respect to its unique
maximal ideal m. If char(R) = char(R/m) = 0 and R contains a field then R has a coefficient
field.

Proof. We must show that R contains a field that is isomorphic to its residue field. Consider
the set

S = {K ⊆ R | K is a field }

S is clearly non-empty by hypothesis. Let C ⊆ S be a chain in S. Then clearly the union
of the elements in C is again a field contained in R and is thus in S. Appealing to Zorn’s
Lemma, there exists a maximal field K ⊆ R.

Now consider the mapping

ϕ : R→ k = R/m

which maps R onto its residue field k. We claim that ϕ maps K isomorphically to k. Since
K is a field, we must have that ϕ|K is injective. Hence it remains to show that ϕ|K is
surjective. Suppose that ϕ(K) ( k. Fix some y ∈ k\ϕ(K). Since ϕ is surjective, there is
an x ∈ R with ϕ(x) = y.

Suppose that y is not a root of a monic polynomial in ϕ(K)[X]. Then x is not the root
of a monic polynomial in K[X]. Now consider the homomorphism

ψ : K[X]→ R

X 7→ x

Since K is a field, the kernel of ψ is either zero or the ideal generated by some monic poly-
nomial. But x is not the root of any monic polynomial in K[X] hence we must have that
kerψ = { 0 } whence ψ is injective. Hence R contains a copy of K[X], which we denote
K[x]. Now the map sending K[x] to k is clearly injective since y is not the root of any
monic polynomial in ϕ(K)[X]. It follows that if p ∈ K[x] is non-zero then p 6≡ 0 (mod m).
Hence p 6∈ m. But R is local so p must be a unit in R. We then have that the field of
rational functions Frac(K[x]) = K(x) is contained in R. But K ( K(x) which contradicts
the maximality of K.
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Conversely, suppose that y is a root of a monic polynomial in ϕ(K)[X]. Let f ∈ ϕ(K)[X]
be its minimal polynomial. f is irreducible over ϕ(K)[X] and its inverse image, say F , is
irreducible over K[X]. Now, char(k) = 0 hence f is seperable whence f ′(y) 6= 0. This
implies that y is a simple root of f(X). Applying Corollary 5.2 we see that F has a simple
root, say x ∈ R. Now consider the homomorphism

ψ : K[X]/F → R

X 7→ x

We claim that ψ is injective. This becomes quite obvious from the following diagram:

K[X]/F R

k

ψ

ϕ

Indeed, ϕ ◦ ψ is injective since 0 + F is the only element of K[X]/F that can map to 0 in
k. Hence ψ must be injective. We thus see that R contains a copy of K[X]/F . Now F is
irreducible over K and K[X]/F must be a field. It clearly contains (and is not equal to) K
which contradicts the maximality of K in R.

Both cases yield contradictions so our only option is that ϕ(K) = k.

Lemma 6.7. Let R be a local Noetherian ring that is complete with respect to its unique
maximal ideal m. If char(R) = char(R/m) = p > 0 and R/m is perfect then R has a unique
coefficient field.

Proof. Let Rpn denote the set

Rpn = { rpn | r ∈ R }

We claim that K =
⋂∞
i=0R

pi is a coefficient field for R. We must first show that K is itself
a field. Suppose that a ∈ K ∩ m. Then, by definition of K, a is a (pn)th power of some
element, say b ∈ R. It then follows that b ∈ m. From this we see that a ∈

⋂∞
i=0m

pn . Krull’s
Intersection Theorem then implies that a = 0. Since K ∩m = { 0 }, we see that K\ { 0 } are
all units of R. Let x ∈ K\ { 0 }. Then x = yp

n
for some n. Taking the inverse of both sides,

we see that x−1 = (y−1)p
n

and thus x−1 ∈ K. K is hence a field.

As in the proof of the previous lemma, in order to show that K is a coefficient field,
it suffices to show that ϕ : R → R/m maps K onto the residue field. To this end, fix
y ∈ k = R/m. We need to find an x ∈ K such that ϕ(x) = y. Since ϕ is surjective and k
is perfect, we can find an xn ∈ R such that ϕ(xn) = y1/p

n
. Raising both sides to the (pn)th

power, we have ϕ(xp
n

n ) = y. Observe that both xn and xpn+1 map to y1/p
n

under ϕ. Thus,
xn ≡ xpn+1 (mod m). Raising this to the (pn)th power, we have

xp
n

n ≡ xp
n+1

n+1 (mod mpn)

We see that the sequence xp
i

i defines an element of the inverse limit2, say x ∈ R. Further-
more, ϕ(x) = y by construction. It remains to show that x ∈ K. By the definition of K,

2in fact, this sequence is a Cauchy sequence - the entire theory of complete local rings can be constructed
through topological means by taking the powers of m to be a basis of neighbourhoods of 0
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we just need to show that x ∈ Rpi for all i. Clearly, we can play the same game as above to
construct an element of the inverse limit that maps to y1/p

i
for all i. Hence for all i, we can

find a zi such that zp
i

i = x and the lemma is proven.

It remains to show the uniqueness of K. Suppose that L is any other coefficient field of R.
Then L ∼= k and L is perfect. By definition of a perfect field, the Frobenius endomorphism
on L is an automorphism whence L = Lp = Lp

2
= . . . . This implies that L = Lp

n ⊆ Rpn

for all n ≥ 0 and thus L ⊆ K. But K is a field and K ∼= k ∼= L so we must have that
L = K. Hence K is the unique coefficient field of R.

Theorem 6.8 (Cohen’s Structure Theorem). Let R be a local Noetherian ring that is com-
plete with respect to its unique maximal ideal m. Let k = R/m be its residue field. If R
contains a field and k is perfect then R ∼= k[[X1, . . . , Xn]]/I for some ideal I.

Proof. Since k is perfect, Lemmas 6.6 and 6.7 imply that R has a coefficient field, say K.
Now R is Noetherian which means m is finitely generated, say by m1, . . . ,mn. We claim
that the map

φ : K[[X1, . . . , Xn]]→ R

Xi 7→ mi

is well-defined and surjective. Applying the same reasoning as for Proposition 4.2, we see
that φ is well-defined. Now, for surjectivity, we consider the induced map of associated
graded rings gr(φ) : gr(K[[X1, . . . , Xn]]) → gr(R). This map is surjective because K ∼= k
and

gri(φ) :
(X1, . . . , Xn)i

(X1, . . . , Xn)i+1
→ mi

mi+1

Xi 7→ mi

is surjective since the mi generate m. Now by Lemma 6.4, φ is surjective hence

k[[X1, . . . , xn]]/ ker(φ) ∼= R

thereby proving Cohen’s Structure Theorem.

In fact, Cohen’s Structure Theorem holds for any complete local Noetherian ring that
contains a field, regardless of whether or not that field is perfect. Since R contains a field
K, it can be shown that char(R) = char(K). For this reason, the case where R contains a
field is sometimes called the equicharacteristic Cohen Structure Theorem.

If R does not contain a field then we may refer to the mixed characteristic Cohen
Structure Theorem which states that a complete local Noetherian ring R that does not con-
tain a field is isomorphic to D[[X1, . . . , Xn]]/I where D is some discrete valuation ring and
I is an ideal.
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